Natural amino acids do not require their native tRNAs for efficient selection by the ribosome
نویسندگان
چکیده
The involvement of tRNA structural elements beyond the anticodon in aminoacyl-tRNA (aa-tRNA) selection by the ribosome has revealed that substrate recognition is considerably more complex than originally envisioned in the adaptor hypothesis. By combining recent breakthroughs in aa-tRNA synthesis and mechanistic and structural studies of protein synthesis, we have investigated whether aa-tRNA recognition further extends to the amino acid, which would explain various translation disorders exhibited by misacylated tRNAs. Contrary to expectation, we find that natural amino acids misacylated onto natural but non-native tRNAs are selected with efficiencies very similar to those of their correctly acylated counterparts. Despite this, small but reproducible differences in selection indeed demonstrate that the translational machinery is sensitive to the amino acid-tRNA pairing. These results suggest either that the ribosome is an exquisite sensor of natural versus unnatural amino acid-tRNA pairings and/or that aa-tRNA selection is not the primary step governing the amino acid specificity of the ribosome.
منابع مشابه
In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system
Position-specific incorporation of non-natural amino acids into proteins is a useful technique in protein engineering. In this study, we established a novel selection system to obtain tRNAs that show high decoding activity, from a tRNA library in a cell-free translation system to improve the efficiency of incorporation of non-natural amino acids into proteins. In this system, a puromycin-tRNA c...
متن کاملA bacterial strain with a unique quadruplet codon specifying non-native amino acids.
The addition of noncanonical amino acids to the genetic code requires unique codons not assigned to the 20 canonical amino acids. Among the 64 triplet codons, only the three nonsense "stop" codons have been used to encode non-native amino acids. Use of quadruplet "frame-shift" suppressor codons provides an abundant alternative but suffers from low suppression efficiency as a result of competing...
متن کاملRibosome dynamics during decoding
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to se...
متن کاملA Review on Recent Findings on Amino Acids Requirements in Poult-Studies
Amino acids (AA) are important in poultry nutrition not only for protein deposition, but also for other metabolic functions; such as improving immune and gut functions. Although, some table values are available on amino acids requirement, AA requirements may vary due to changes in dietary composition and breeding selection. Thus amino acids requirements have remained an ongoing research topic. ...
متن کاملFluorescent labeling of tRNAs for dynamics experiments.
Transfer RNAs (tRNAs) are substrates for complex enzymes, such as aminoacyl-tRNA synthetases and ribosomes, and play an essential role in translation of genetic information into protein sequences. Here we describe a general method for labeling tRNAs with fluorescent dyes, so that the activities and dynamics of the labeled tRNAs can be directly monitored by fluorescence during the ribosomal deco...
متن کامل